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Abstract: The lack of any local solution to the first-order-in-hωmn Seiberg-Witten (SW)

map equations for U(1) vector superfields compels us to obtain the most general solution to

those equations that is a quadratic polynomial in the ordinary vector superfield,v, its chiral

and antichiral projections and the susy covariant derivatives of them all. Furnished with

this solution, which is local in the susy Landau gauge, we construct an ordinary dual of

noncommutative U(1) SYM in terms of ordinary fields which carry a linear representation

of the N = 1 susy algebra. By using the standard SW map for the N = 1 U(1) gauge

supermultiplet we define an ordinary U(1) gauge theory which is dual to noncommutative

U(1) SYM in the WZ gauge. We show that the ordinary dual so obtained is supersymmetric,

for, as we prove as we go along, the ordinary gauge and fermion fields that we use to define

it carry a nonlinear representation of the N = 1 susy algebra. We finally show that the

two ordinary duals of noncommutative U(1) SYM introduced above are actually the same

N = 1 susy gauge theory. We also show in this paper that the standard SW map is never

the θθ̄ component of a local superfield in v and check that, at least at a given approximation,

a suitable field redefinition of that map makes the noncommutative and ordinary — in a

Bmn field — susy U(1) DBI actions equivalent.
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1. Introduction

Noncommutative quantum field theories have been widely investigated in the past years,

chiefly after it was shown in ref. [1] that they arise as effective theories of open strings ending

on D-Branes with a constant Neveu-Schwarz background Bmn. In ref. [1], it was also shown

that noncommutative U(1) gauge theories can be mapped to a theory with ordinary gauge

symmetry, since both theories arise as effective theories of the same underlying open string

theory; this equivalence can be seen [1] as a mapping between a noncommutative Moyal

deformed DBI action and a commutative DBI action in the presence of a constant Bmn

background. The Seiberg-Witten map thus associates to every noncommutative U(N)

gauge theory an equivalent — at least for energies well below the noncommutative energy

scale — ordinary U(N) gauge theory, which we shall call in the sequel the ordinary dual

under the Seiberg-Witten map of the former noncommutative gauge theory.

Most of the papers — see refs. [2 – 12] and [13] for an incomplete list — where the

properties of the ordinary duals under the Seiberg-Witten map of noncommutative U(N)

gauge theories are discussed deal with nonsupersymmetric theories or with the bosonic

sector of supersymmetric theories. The construction of supersymmetric duals under the

Seiberg-Witten map of noncommutative supersymmetric U(N) gauge theories is tackled
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only in an astonishingly short number of papers — see for instance refs. [14 – 20]. Moreover

the picture emerging from them is a bit blurred since there are important issues that

have not been clarified in them and which we shall spell out next. First, there is the

issue of the existence of a generalisation to objects made out of superfields of the Seiberg-

Witten map introduced in ref. [1] — the map in ref. [1] will be called henceforth the

standard Seiberg-Witten map. In refs. [14] and [18] it is claimed that there exists such a

generalisation and that it is a polynomial — and thus a local object — in the ordinary vector

superfield and its supersymmetry covariant derivatives. This statement is at odds with the

result presented in ref. [19] where it is shown that the first-order consistency condition

for the Seiberg-Witten map for superfields admits no solution that is a polynomial of the

appropriate ordinary superfields and their supersymmetry covariant derivatives. The latter

result is in line with the fact that no local solution to the Seiberg-Witten map equations

was found in ref. [15] at first order in the noncommutativity parameters and with the

claim made in ref. [17] that there is no superfield formalism in terms of ordinary vector

superfields that would allow us to formulate the ordinary dual under the standard Seiberg-

Witten map of noncommutative U(1) superYang-Mills theory in the Wess-Zumino gauge.

In ref. [15] a solution to the Seiberg-Witten map equations for U(1) superfields was worked

out at first order in the noncommutativity parameters. In ref. [15], it is also claimed

that the solution displayed in there is unique, which is quite surprising. The Seiberg-

Witten map obtained by the authors of ref. [15] is local and trivial in the supersymmetric

Landau gauge — but nonlocal and non-trivial otherwise — and yields an ordinary dual

with linearly realised supersymmetry of the noncommutative U(1) N = 1 superYang-

Mills theory. Secondly, there is the issue of the supersymmetric character of the ordinary

dual under the standard Seiberg-Witten map of U(1) superYang-Mills theory in the Wess-

Zumino gauge. Such ordinary dual theory is constructed in refs. [17, 18] and [20]. In these

papers, the transformations of the fields of the dual ordinary theory that give rise to the

supersymmetry transformations of the noncommutative theory are computed at first-order

in the noncommutativity parameters. Those transformations of the dual ordinary fields

turn out to be nonlinear, though local, in these fields. It is thus apparent that these ordinary

dual fields do not carry a linear realisation of the N = 1 supersymmetry algebra in four

dimensions. Whether these nonlinear transformations constitute a nonlinear realisation

of the N = 1 supersymmetry algebra in four dimensions is not discussed in those papers,

although the transformations in question are referred to as supersymmetry transformations.

We believe that to rightly call these transformations supersymmetry transformations one

should establish first that they are nonlinear realisations of the supersymmetry algebra. It

should also be noticed that in general the Seiberg-Witten map does not preserve the gauge-

fixing condition — e.g., it does not map in general an ordinary gauge field configuration in

the temporal gauge into a noncommutative gauge field configuration in that very gauge, a

situation that is reproduced for the Wess-Zumino gauge for the superfield Seiberg-Witten

map of ref. [15] — so it is not obvious that by choosing the Wess-Zumino gauge and

then applying the standard Seiberg-Witten map one does not gives rise to a breaking of

supersymmetry in the ordinary dual theory so constructed. Now that there seem to arise

two ordinary duals — one obtained by using a nonlocal superfield Seiberg-Witten map and
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the other constructed by using the standard Seiberg-Witten map — of noncommutative

U(1) N = 1 superYang-Mills theory, it is fair to ask whether they really are different

theories as ordinary theories — they seem to have different supersymmetric features —

or the same ordinary theory expressed in terms of different sets of field variables. We

have just stated the third issue that has not been clarified yet. Let us mention that in

gaining a full understanding of all these matters one should check — a check that has not

been done in the literature yet — that the standard Seiberg-Witten map, or some Seiberg-

Witten map equivalent to it, establishes a connection between the ordinary DBI action in

the presence of a constant background Bmn field and the noncommutative DBI action for

N = 1 supersymmetry in four dimensions.

The purpose of this paper is to clarify all the issues commented upon above. Before

we display how we have organised the paper, let us point out that a complete understand-

ing of the duality relationship established by the Seiberg-Witten map for noncommutative

supersymmetric gauge theories at the classical level is necessary, if the existence of such

duality relationship is to be investigated for quantum theories — only for Chern-Simons

theory such investigation has been undertaken [21]. Indeed, on the one hand, due to UV/IR

mixing, noncommutative non-supersymmetric Yang-Mills theories have severe noncommu-

tative infrared divergences that are absent in their supersymmetric versions [22], and, on

the other hand, the ordinary dual theory of a given noncommutative gauge theory — e.g.,

noncommutative QED — is not necessarily renormalisable [23]. We would also like to stress

that the results we shall report on below are also relevant to the field of noncommutative

gauge theories constructed within the enveloping-algebra formalism. This formalism was

put forward in refs. [24, 25] and [26], and has led to important new results such as the

formulation of the noncommutative Standard Model [27] and other [28] anomaly free theo-

ries [29], which may be of relevance in accounting for the experimental data to be recorded

at the LHC [30 – 33].

The layout of this paper is as follows. In section 2 we show by explicit computation

that the standard Seiberg-Witten map is never the θθ̄ component of a superfield made out

of the ordinary vector superfield and its supersymmetry covariant derivatives, and address

the problem of finding physically sensible solutions to the Seiberg-Witten map equation for

U(1) superfields. Here, we construct, at first order in the noncommutativity parameters,

the most general solution — which is not unique — to this equation that is a quadratic

polynomial in the ordinary vector superfield, its chiral and antichiral projections and their

supersymmetry covariant derivatives. We show in section 3 that the standard Seiberg-

Witten map, applied to the noncommutative gauge supermultiplet of noncommutative

U(N) superYang-Mills theory in the Wess-Zumino gauge, always yields an ordinary U(N)

gauge supermultiplet which carries a nonlinear representation of the N = 1 supersymmetry

algebra in four dimensions. We discuss here how this result is in agreement with the fact

that, upon adding certain field redefinitions — that we compute in appendix B — the

standard Seiberg-Witten map turns, in some approximation, the N = 1 supersymmetric

DBI action in the presence of a Bmn field into the noncommutative N = 1 supersymmetric

DBI action. In section 4 we show that the dual ordinary theories of noncommutative U(1)

superYang-Mills theories constructed in sections 1 and 2 are the same supersymmetric
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theory but formulated in terms of different sets of variables. Our summary of the paper and

the conclusions are the content of section 5. We also include three appendices. Appendix

A is merely notational. In appendix B we discuss the equivalence under the Seiberg-

Witten map of the DBI action in the presence of a Bmn field and the noncommutative

DBI action, in the case of N = 1 supersymmetry in four dimensions. We have included in

appendix C the proof that the ordinary dual under the standard Seiberg-Witten map of

noncommutative U(1) Yang-Mills theory cannot be turned into a supersymmetric theory

by including in the action new local terms of the appropriate dimension, if the fields in the

resulting action carry a linear representation of N = 1 supersymmetry in four dimensions.

2. The Seiberg-Witten map equation for superfields and an ordinary dual

of noncommutative U(1) N = 1 superYang-Mills

The aim of this section is to obtain a U(1) ordinary theory with linearly realised N = 1 su-

persymmetry which is dual, at least classically, to noncommutative U(1) N = 1 superYang-

Mills. To do so we shall set up the Seiberg-Witten-map equations for U(1) superfields and

then build solutions to them. We shall also show that these solutions cannot be constructed

by following the strategy suggested in ref. [14].

We define noncommutative gauge theories with linearly realised N = 1 supersymmetry

in terms of superfields as in refs. [34, 35]. Our superspace conventions will be those found in

ref. [36] and the Moyal product, “⋆”, of a and b will be given by a⋆b = a exp
(

ih
2

←−
∂mω

mn−→∂n

)
b;

h sets the noncommutative scale. All along this paper, we will denote space-time indices

with Latin letters and spinor indices with Greek letters. V shall denote a U(1) noncommu-

tative vector superfield. Under noncommutative U(1) transformations — defined by the

chiral superfield Λ — V transforms as follows:

eV
′

⋆ = eiΛ̄⋆ ⋆ eV⋆ ⋆ e−iΛ
⋆ , (2.1)

eA⋆ denotes the exponential of A defined in terms of the usual power series with products

replaced by star products. Λ̄ is the conjugate of Λ.

Let snc denote the operator generating the noncommutative BRS transformations of

the superfields V , then, eq. (2.1) leads to

snc V = −
i

2
LV (Λ̄ + Λ) +

i

2
LV coth⋆

(
LV

2

)
(Λ̄− Λ), LV = [V, ]⋆, snc Λ = iΛ ⋆ Λ,

where Λ now denotes an infinitesimal Grassmann chiral superfield. Let v and λ denote,

respectively, an ordinary U(1) vector and an ordinary U(1) ghost superfields. In keeping

with the ideas underlying the Seiberg-Witten map, to obtain an ordinary theory dual of

noncommutative U(1) N = 1 superYang-Mills, one should first express the U(1) noncom-

mutative superfields V and Λ as functions of v and λ, and their susy covariant derivatives,

in such a way that ordinary BRS orbits are mapped into noncommutative BRS orbits.

This is achieved by solving the Seiberg-Witten-map equations for U(1) superfields. These
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equations read

snc Λ[λ, v] = sΛ[λ, v], Λ, λ chiral,

snc V [v] = sV [v], V, v real.

The symbol s denotes the ordinary U(1) BRS operator, which acts on the ordinary super-

fields as follows

sv = i(λ̄− λ), sλ = 0. (2.2)

Expanding the noncommutative fields in powers of hωmn,

Λ = λ+ hΛ(1) +O(h2), V = v + hV (1) +O(h2), (2.3)

one gets the following equations for the first order contributions:

sΛ(1) =
1

32
ωαβ ∂

κ̇αλ∂κ̇
βλ+

1

32
ω

α̇β̇
∂α̇κλ∂β̇

κλ,

sV (1) = −
1

32
ωαβ ∂κ̇

αvλ∂κ̇β(λ+ λ̄)−
1

32
ωα̇β̇ ∂α̇

κv∂β̇κ(λ+ λ̄) + i(Λ̄(1) − Λ(1)), (2.4)

where we used — see appendix A for notation — the following relations between vector

indices (Latin letters) and spinor indices (Greek letters):

∂α̇β = (σ̄m)α̇β∂m,

ωmn = −
1

16
(σmn)αβωαβ +

1

16
(σ̄mn)α̇β̇ω

α̇β̇
,

ωρσ = −2(σmn)ρσωmn, ωρ̇σ̇ = 2(σ̄mn)ρ̇σ̇ωmn.

One should first look for solutions to eq. (2.4) that would allow us to make contact with

the Seiberg-Witten map — called the standard Seiberg-Witten map — as introduced in

ref. [1]. In looking for these solutions the first obstacle one stumbles on is the fact that, at

first order in hωmn, the standard Seiberg-Witten map is never the θαθ̄α̇ component of a

real superfield, with no free spinor indices, which is a polynomial in v and its susy covariant

derivatives Dα, D̄α̇, ∂αβ̇ . This fact, that has not been properly discussed in the literature as

yet, contradicts the claim made in ref. [14] that the standard Seiberg-Witten map can be

supersymmetrised at first order in hωmn, i.e., that at first order in hωmn a dimensionless

real polynomial in v and its susy derivatives with no free spinor indices can be constructed

so that its θαθ̄α̇ component is the standard Seiberg-Witten map.

The BRS transformations with nonstandard normalisations inherited by the gauge

fields Am — noncommutative — and am — ordinary — from the superfield gauge trans-

formations in eqs. (2.1) and (2.2) read sncAm = −2∂mZ − i[Am, Z]⋆, sam = −2∂mz. For

these BRS transformations the first-order-in-hωmn standard Seiberg-Witten map of ref. [1]

runs thus

A
(1)st
l =

1

2
ωmn

(
am∂nal −

1

2
am∂lan

)
. (2.5)

Let us now show that this A
(1)st
l is not the θβ(σ̄l)α̇β θ̄

α̇ component of a dimensionless real

polynomial with no free spinor indices made out of v and its susy derivatives. Since A
(1)st
l is
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quadratic in am, it suffices to consider the most general, Ṽ , dimensionless real polynomial

in v and its susy derivatives with no free spinor indices which is linear in ωmn and quadratic

in v. Ṽ is given by

Ṽ =

5∑

i=1

(xi Re ti + yi Im ti), xi, yi ∈ R,

where Re ti and Im ti denote, respectively, the real and imaginary parts of ti, and xi and

yi are arbitrary real coefficients. {ti}{i=1...5} denotes the following set of monomials

t1 = ωαβ∂
αβ̇
D̄β̇Dβvv, t2 =ωαβ∂

αβ̇
D̄β̇vDβv, t3 = iωαβD̄2DαvDβv, t4 =ωαβ∂α

β̇DβvD̄β̇
v,

t5 = ωαβDαD̄
α̇v∂βα̇v. (2.6)

For the reader’s sake we also display the complex conjugates, t̄i, i = 1 . . . 5, of the previous

monomials:

t̄1=−ω
ȧβ̇∂βα̇D

βD̄
β̇
vv, t̄2=−ω

α̇β̇∂βα̇D
βvD̄

β̇
v, t̄3=−iω

α̇β̇D2D̄α̇vD̄β̇
v, t̄4=−ω

α̇β̇∂β
α̇D̄β̇

vDβv,

t̄5 =−ωα̇β̇D̄α̇D
αv∂

αβ̇
v.

Let us now show that for no choice of xi and yi the following equation will hold

1

4
(σm)βα̇[D̄α̇,Dβ ]Ṽ |θ=θ̄=0,aa = A(1)st

m . (2.7)

By aa, we mean that only the contributions quadratic in am are kept. Now, it can be

seen that the am−dependent part of the terms Im ti always involve contractions with the

Levi-Civita symbol ǫmnrs, which never occur in eq. (2.5) — recall that ωmn is real and

that our noncommutative space-time has got Minkowski signature. Hence, the yi will be

of no avail to make eq. (2.5) hold and thus we shall only worry about the contributions

coming from Re ti. Introducing the notation 1
4(σm)βα̇[D̄α̇,Dβ]Re ti ≡ Ã

[i]
m and after some

computations one finds that

Ã
[1]
l = −4ωmnfmnal,

Ã
[2]
l = −2ωmn(fmnal + 2ηmlan(∂a) + 2fmlan − 2ηlnfmka

k),

Ã
[3]
l = −8ωmn(fmnal − 2flman − 2ηlmfkna

k),

Ã
[4]
l = −2ωmn(fmnal − 2flnam + 4∂malan − 2ηlnfmka

k + 4ηlm∂
kanak + 2ηln(∂a)am),

Ã
[5]
l = 16ωmnam∂nal.

Finally, eq. (2.7) boils down to

∑
xiÃ

[i]
l =

1

2
ωmn

(
am∂nal −

1

2
am∂lan

)
,

which has no solution since, in spite of the fact that the terms that occur on its r.h.s.

can be obtained by choosing several values of the xi, there always appear undesired extra

– 6 –



J
H
E
P
1
1
(
2
0
0
8
)
0
8
7

terms involving contractions of the type ωmnηlm. Notice that the ambiguity [37] of the

Seiberg-Witten map cannot be taken advantage of to fix this situation, for this ambiguity,

in the U(1) case, is linear in am.

In searching for solutions to eq. (2.4), the second difficulty one meets is that, as shown

in ref. [19], Λ(1) cannot be a polynomial in v, λ and its susy derivatives, since Λ(1) is

chiral. Thus one is led to look for nonlocal solutions to eq. (2.4), i.e., solutions that

are not polynomials in the ordinary superfields and their susy derivatives. To avoid the

inconsistencies that usually arise in theories with gauge independent nonlocal terms, one

may look for solutions to eq. (2.4) whose nonlocal contributions vanish in a given gauge.

Since both the chiral and antichiral projections of v, namely, v+ ≡ P+v and v− ≡ P−v,

with P+ = 1
16π2

D̄2D2

�
and P− = 1

16π2
D2D̄2

�
, vanish in the susy Landau gauge D2D̄2v =

D̄2D2v = 0, and since projecting v into its chiral part may help find a chiral Λ(1), it is

natural — and the next simplest ansatz to that of local solutions — to look for solutions to

eq. (2.4) that are polynomials in λ, v, v+, v− and their susy covariant derivatives. We shall

further assume that Λ(1) is linear in v, v±, and that V (1) is at most quadratic in v, v±; the

rationale for these assumptions is that the corresponding first-order-in-hωmn contributions

to the standard Seiberg-Witten maps are, respectively, linear and quadratic in am. Let us

introduce some more notation: v̄ ≡ v−v+−v− — of course, sv̄ = 0. A lengthy computation

yields the following family of solutions to eq. (2.4):

Λ(1) =
i

32
ωαβ ∂α̇

αv+∂α̇βλ+
i

32
ωα̇β̇ ∂α̇

αv+∂αβ̇λ+ xωαβD̄2(Dαv̄Dβλ), (2.8)

V (1) =xωαβD̄2(Dαv̄Dβv) + x̄ωα̇β̇D2(D̄α̇v̄D̄β̇v) (2.9)

+
i

32
ωαβ [∂α̇

α(v − v−)∂α̇β(v − v+)]

−
i

32
ωα̇β̇ [∂α̇

α(v − v+)∂
β̇α

(v − v−)] + X , sX = 0.

x is an arbitrary constant parametrising the ambiguity in the map for Λ; it must be

imaginary if one wants to avoid — as happens in standard Seiberg-Witten map case —

parity violating terms — contributions involving contractions with the ǫmnrs symbol —

in the map for the component field am that otherwise will make the noncommutative

and ordinary gauge fields behave not in the same way under parity. X represents the

ambiguity in the map for the real superfield V ; it is given by the most general linear

combination of terms constructed from v̄ and susy covariant derivatives Dα, D̄α̇, ∂α̇β, i.e.,

a linear combination of the real and imaginary parts of the terms appearing in eq. (2.6),

with v substituted by v̄. X can be interpreted as a field redefinition of v. Our solutions

for Λ(1) and V (1) include the particular solution found in ref. [15].

In the case of the map for V, the x-dependent terms can be gauged away by performing

a gauge transformation of v, since they can be written as the difference of a chiral and an

antichiral term. It is plain that in the supersymmetric Landau gauge the Seiberg-Witten

map above is local and V (1) is given by the most general local expression quadratic in v that

one can write; this is a very welcomed feature of the map in regards with renormalisability

issues [38 – 40].
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In refs. [17, 18] the standard Seiberg-Witten map was used to construct an ordinary

— i.e., on ordinary Minkowski space-time — field theory that is dual to U(1) noncommu-

tative SYM theory formulated in the Wess-Zumino gauge. This ordinary dual theory is

formulated in terms of the “susy” gauge multiplet (am, λα, d), which undergoes ordinary

U(1) transformations but whose “susy” transformations are a sum of the ordinary susy

transformations plus nonlinear ωmn-dependent terms — this is why for the time being we

write “susy” and not susy; we shall show that these comas can be removed in section 3.

Since it is one of the purposes of this paper to relate the ordinary dual theory obtained

from noncommutative U(1) N = 1 superYang-Mills by using the Seiberg-Witten map for

superfields — see eqs. (2.3), (2.8) and (2.9) — with the dual ordinary theory obtained from

the latter noncommutative theory as in refs. [17, 18], we shall need to gauge transform to

the Wess-Zumino gauge the noncommutative scalar superfield V [v] defined in eqs. (2.3)

and (2.9). Let us stress first that if vWZ denotes a general ordinary real scalar superfield

in the Wess-Zumino gauge, then its noncommutative image, V [vWZ], given by the Seiberg-

Witten map in eqs. (2.3) and (2.9), is not a noncommutative real scalar superfield in the

Wess-Zumino gauge. But, of course, one can further gauge transform this V [vWZ] to a new

noncommutative scalar superfield VWZ[am, λα, λ̄α̇, d] which is in the Wess-Zumino gauge

— am, λα, λ̄α̇ and d are the components of vWZ. Indeed,

eV
WZ[am,λα,λ̄α̇,d] = eiΛ̄

WZ

⋆ ⋆ e
V [vWZ]
⋆ ⋆ e−iΛWZ

⋆ , (2.10)

for a ΛWZ which is linear in hωmn, leads to

VWZ[am, λα, λ̄α̇, d] = vWZ + hV (1)[vWZ] + ih(Λ̄WZ − ΛWZ) +O(h2),

ΛWZ = −
i

2
C(1)(y)− iθαΨ(1)

α (y)−
i

2
θ2F (1)(y), ym = xm − iθασ̄m

β̇α
θ̄β̇. (2.11)

C(1)(x), Ψ
(1)
α (x) and F (1)(x) are the lowest components of V (1)[vWZ], the latter defined by

eq. (2.9):

V (1)[vWZ]=C(1)+θαΨ(1)
α +θ̄α̇Ψ̄

(1)
α̇ +

1

2
θ2F (1)+

1

2
θ̄2F̄ (1)+θαθ̄β̇A

(1)

β̇α
+

1

2
θ2θ̄α̇Λ̄

′ (1)
α̇ +

1

2
θ̄2θαΛ

′ (1)
α

+
1

4
θ̄2θ2D

′ (1),

Λ
′ (1)
α = Λ(1)

α −iσ̄
m
β̇α
∂mΨ̄(1) β̇, D

′ (1) = D(1)+�C(1),

vWZ = θαθ̄β̇a
β̇α

+
1

2
θ2θ̄α̇λ̄α̇ +

1

2
θ̄2θαλα +

1

4
θ̄2θ2d. (2.12)

For x = 0 and X = 0, the components of V (1)[vWZ] read

C(1) =−
ωαβ

256

∂α̇
α

�
d
∂α̇β

�
∂a+ c.c.,

Ψ(1)
σ =

ωαβ

256

∂α̇
α

�
(d− 2i∂a)

∂α̇β∂ρ̇σ

�
λ̄ρ̇ +

ωα̇β̇

256

∂α
α̇

�
(d− 2i∂a)

∂
β̇α
∂ρ̇σ

�
λ̄ρ̇,

F (1) =0,
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A
(1)

β̇γ
=
ωαβ

256

[

8∂α̇
αaβ̇γ

∂α̇β

�
∂a+ 4

∂α̇
α

�
∂a
∂α̇β∂β̇γ

�
∂a+

∂α̇
α

�
d
∂α̇β∂β̇γ

�
d− 2i

∂α̇
α∂β̇σ

�
λσ ∂α̇β∂γσ̇

�
λ̄σ̇

]

(2.13)

+ (c.c)|(β↔γ),

Λ(1)
ρ =

1

128

[

−4ωαβ ∂
α̇
α

�
∂a∂α̇βλρ − 4ωα̇β̇ ∂

α
α̇

�
∂a∂β̇αλρ + 2ωαβ ∂

α̇
α∂

ρ̇
σ

�
λσ∂α̇β

(
aρ̇ρ −

∂ρ̇ρ

�
∂a

)
+

+ 2ωα̇β̇ ∂
α
α̇∂

ρ̇
σ

�
λσ∂β̇α

(
aρ̇ρ−

∂ρ̇ρ

�
∂a

)
+iωαβ ∂

α̇
α∂

ρ̇
σ

�
λσ ∂α̇β∂ρ̇ρ

�
d+iωα̇β̇ ∂

α
α̇∂

ρ̇
ρ

�
d
∂

β̇α
∂ρ̇σ

�
λσ

]

,

D(1) =
ωαβ

128

[
4∂α̇

αd
∂α̇β

�
∂a+

∂α̇
α∂

ρ̇
σ

�
λσ∂α̇βλ̄ρ̇+∂

α̇
αλ

σ ∂α̇β∂σ̇σ

�
λ̄σ̇+2∂α̇

α

(
aσρ̇−

∂σρ̇

�
∂a

)
∂α̇β∂ρ̇σ

�
d

]
+c.c.

In the previous equations, (c.c.) denotes complex conjugate and (c.c.)|β↔γ denotes complex

conjugate with indices β and γ exchanged (hermitian conjugation); for example σ̄
β̇γ

+

(c.c.)|β↔γ = 2σ̄β̇γ .

Taking into account eqs. (2.11), (2.12) and (2.13), one concludes that

VWZ[am, λα, λ̄α̇, d] = θαθ̄β̇A
β̇α

+
1

2
θ2θ̄α̇Λ̄α̇ +

1

2
θ̄2θαΛα +

1

4
θ̄2θ2D, (2.14)

A
β̇α

= a
β̇α

+ hA
(1)

β̇α
+O(h2), Λα = λα + hΛ(1)

α +O(h2), D = d+ hD(1) +O(h2),

where A
(1)

β̇α
, Λ

(1)
α and D(1) are the same as for V [vWZ] and thus given in eq. (2.13). Let us

stress that V [vWZ] and VWZ[am, λα, λ̄α̇, d] define the same theory since they are related by

a noncommutative gauge transformation.

We shall close this section by recalling that the ambiguity X in the Seiberg-Witten

map in eq. (2.9) has no physical consequences since it is a local field redefinition of the

ordinary vector superfield, hence we shall set it to zero from now on.

3. Ordinary duals of noncommutative U(N) N = 1 superYang-Mills the-

ory under the standard Seiberg-Witten map

In refs. [17] and [18], the standard Seiberg-Witten map was used to map noncommutative

U(1) SYM theory in the Wess-Zumino gauge to an ordinary gauge theory with U(1) sym-

metry. This construction can be generalised to noncommutative U(N) gauge groups as we

shall do next. The construction we are about to develop may be of relevance in studying

some of the physical implications of the models proposed in refs. [41 – 45] and [46].

Our supersymmetric noncommutative field theory will have the following field content:

a noncommutative gauge N = 1 supermultiplet, (Am,Λα,D). The fields Am,Λα,D are

valued in the Lie algebra of U(N) in the fundamental representation. If Z(x) = Za(x)Ta

denotes an infinitesimal function valued in the Lie algebra of U(N) in the fundamental rep-

resentation, with Za(x) being ghost fields, our theory will be invariant under the following

noncommutative BRS transformations:

snc
Z Am = −D̂mZ = −(∂mZ + i[Am, Z]⋆), snc

Z Λα = −i[Λα, Z]⋆, snc
Z D = −i[D,Z]⋆.
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In addition to the BRS symmetry just defined, our U(N) noncommutative gauge theory

will be invariant under the following supersymmetry transformations:

δ̂ǫAm =
1

4
ǫσmΛ̄−

1

4
ǭσ̄mΛ, δ̂ǫΛα =−ǫαD+2iǫγ(σmn)γαFmn, δ̂ǫD= iǭσ̄mD̂mΛ+iǫσmD̂mΛ̄,

(3.1)

where Fmn = ∂mAn−∂nAm+i[Am, An]⋆ and D̂m = ∂m+i[Am, ]⋆. These supersymmetry

transformations are linear modulo noncommutative gauge transformations, hence the non-

commutative multiplets of our theory carry a linear representation of the supersymmetry

algebra: of course, there is a formulation of our theory in terms of superfields, each multiplet

above constituting the components of the appropriate superfield in the Wess-Zumino gauge.

Let ãm, λ̃α and d̃ stand, respectively, for the ordinary counterparts, under the standard

Seiberg-Witten map, of the noncommutative fields Am, Λα and D introduced above. Then,

up to first order in hωmn, the standard Seiberg-Witten map for our theory is given by the

following equations

Am[ãn] = ãm +
h

4
ωnl{ãn, ∂lãm + f̃lm}+O(h2),

Λα[ãm, λ̃α] = λ̃α +
h

4
ωmn{ãm, 2Dnλ̃α − i[ãn, λ̃α]}+O(h2), (3.2)

D[ãm, d̃] = d̃+
h

4
ωmn{ãm, 2Dnd̃− i[ãn, d̃]}+O(h2),

where f̃nl = ∂nãl − ∂lãn + i[ãn, ãl], Dm = ∂m + i[ãm, ]. By construction the Seiberg-

Witten map defined in eq. (3.2) maps infinitesimal gauge orbits of the ordinary theory into

infinitesimal gauge orbits of the noncommutative theory. Indeed, if the noncommutative

field U [ãm, u] is the image under the Seiberg-Witten map of u, then

U [ãm, u] + κ snc U [ãm, u] = U [ãm + κ s̃ãm, u + κ s̃u], (3.3)

κ being the infinitesimal BRS Grassmann parameter and s̃ being the ordinary BRS operator

which acts on our fields with tilde as follows:

s̃zãm = −Dmz = −(∂mz + i[ãm, z]), s̃zΛα = −i[Λα, z], s̃zd̃ = −i[d̃, z].

Of course, in eq. (3.3), Z in snc and z in s̃ are not independent, but related by

Z = z +
h

4
ωmn {ãm, ∂nz}. (3.4)

We have seen that the Seiberg-Witten map in eq. (3.2) maps a theory on ordinary space-

time having an ordinary U(N) gauge symmetry to a noncommutative U(N) gauge theory

having, therefore, a noncommutative gauge symmetry. But, this noncommutative gauge

theory is further a supersymmetric theory and its fields carry a linear — the supersymmetric

transformations in eq. (3.1) are linear modulo noncommutative gauge transformations —

representation of the supersymmetry algebra, i.e., the commutator of two supersymmetry

transformations acting on a noncommutative field, U , closes on space-time translations

modulo a noncommutative gauge transformation:

[δ̂ξ, δ̂η ] U(x) = −2i(ησmξ̄ − ξσmη̄) ∂m U(x) + δ
(ncgauge)
Ω U(x) ≡ P U(x) + δ

(ncgauge)
Ω U(x).

(3.5)
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U(x) denotes any of the noncommutative fields of our noncommutative theory.

δ
(ncgauge)
Ω U(x) is a noncommutative gauge transformations with Ω(x) = −2i(ησmξ̄ −

ξσmη̄)Am(x). The next issue to be addressed is whether there exist transformations of

the ordinary fields that occur in the Seiberg-Witten map in eq. (3.2) that give rise to the

supersymmetry transformations of the corresponding noncommutative fields that we have

just discussed. The answer to this problem is that there exist such transformations since we

are dealing with U(N) in the fundamental and antifundamental representations. Indeed,

we shall look for infinitesimal variations, δ̃ǫu, of the ordinary fields in eq. (3.2), collectively

denoted by u, such that

U [ãm, u] + δ̂ǫ U [ãm, u] = U [ãm + δ̃ǫ ãm, u + δ̃ǫu], (3.6)

where δ̂ǫ U [ãm, u] is defined in eq. (3.1). Since we understand the Seiberg-Witten map as a

formal power series expansion in hωmn, it turns out that δ̃ǫu can be obtained from eq. (3.6)

as a formal power series expansion in hωmn, provided that the representation of the gauge

group that one considers satisfies: L1 · L2 belongs to its Lie algebra in the corresponding

representation, if L1 and L2 do. As pointed out in ref. [35], this condition restricts the

type of gauge group to U(N) groups, or products of them, and the type of irreducible

representation to the fundamental, antifundamental, adjoint and bi-fundamental. Up to

first order in hωmn, we have

δ̃ǫãm =
1

4
ǫσm

¯̃λ−
1

4
ǭσ̄mλ̃+

h

16
ωnl

[
{ãn, 2Dl(ǫσm

¯̃λ−ǭσ̄mλ̃)−i[ãl, ǫσm
¯̃λ−ǭσ̄mλ̃]}

−{ǫσn
¯̃λ−ǭσ̄nλ̃, ∂lãm + f̃lm}−{ãn, ∂l(ǫσm

¯̃λ−ǭσ̄mλ̃)

+Dl(ǫσm
¯̃
λ−ǭσ̄mλ̃)−Dm(ǫσl

¯̃
λ−ǭσ̄lλ̃)}

]
,

δ̃ǫλ̃α = −ǫαd̃+ 2iǫγ(σmn)γαf̃mn +
h

4
ωnl

[
−

1

4
{ǫσn

¯̃
λ−ǭσ̄nλ̃, 2Dlλ̃α−i[ãl, λ̃α]}

−iǫγ(σmk)γα

(
4{f̃mn, f̃kl} − 2{ãn,Dlf̃mk + ∂lf̃mk}

)

−{ãn, 4iDl(ǫγ(σmk)γαf̃mk) +2[ãl, ǫγ(σmk)γαf̃mk]+
i

4
[ǫσl

¯̃λ−ǭσ̄lλ̃, λ̃α]}
]
,

δ̃ǫd̃ = iǭσ̄mDmλ̃+ iǫσmDm
¯̃λ +

h

4
ωnl

[
2i{f̃mn, ǭσ̄

mDlλ̃+ ǫσmDl
¯̃λ}

+i{ãn, (∂l +Dl)(ǭσ̄
mDmλ̃+ ǫσmDm

¯̃λ)}−
1

4
{ǫσn

¯̃λ−ǭσ̄nλ̃, 2Dld̃−i[ãl, d̃]}

−{ãn, 2Dl(iǭσ̄
mDmλ̃+ iǫσmDm

¯̃
λ)

−i[ãl, iǭσ̄
mDmλ̃+ iǫσmDm

¯̃λ]+
i

4
[ǫσl

¯̃λ−ǭσ̄lλ̃, d̃]}
]
. (3.7)

We have thus worked out, up to first order in hωmn, the infinitesimal variations of the

ordinary fields that give rise through the Seiberg-Witten map in eq. (3.2) to the linearly

realised supersymmetric transformations — see eq. (3.1) — of the noncommutative fields.

Of course, if we set h = 0, these infinitesimal variations of the ordinary fields boil down

to the ordinary supersymmetry transformations of an ordinary gauge theory in the Wess-

Zumino gauge. However, the contributions of order hωmn are nonlinear modulo gauge

transformations, and tell us that unlike for gauge symmetries the standard Seiberg-Witten
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map in eq. (3.2) does not transmute supersymmetry transformations of the ordinary fields

realising supersymmetry linearly into supersymmetry transformations of the noncommu-

tative fields also realising supersymmetry linearly. The question then arises as to whether

the nonlinear transformations in eq. (3.7) realise a — nonlinear — representation of su-

persymmetry in the sense that the commutator of two such transformations on ordinary

fields closes on space-time translations modulo ordinary gauge transformations. If we can

answer the question in the affirmative — which we shall, at any order in hωmn —, we will

be entitled to call the transformations in eq. (3.7) supersymmetry transformations. This

issue has never been discussed in the literature, although the U(1) version of the transfor-

mations in eq. (3.7) have been called supersymmetry transformations. Let us show that if

δ̃ǫu is an infinitesimal transformation satisfying eq. (3.6), then

[δ̃ξ, δ̃η ]u(x) = −2i(ησmξ̄ − ξσmη̄) ∂m u(x) + δ
(gauge)
g(x) u(x) ≡ (P + δ

(gauge)
g(x) ) u(x), (3.8)

where g(x) is the inverse image of Ω(x) in eq. (3.5) under the Seiberg-Witten map, i.e., —

see eq. (3.4) —

Ω(x) = g(x) +
h

4
ωmn {ãm, ∂ng}(x) +O(h2).

Now, since δ̃ξ and δ̃η are infinitesimal variations, their commutator [δ̃ξ, δ̃η ] acts as a deriva-

tion on polynomials of the ordinary fields and their space-time derivatives. Then

[δ̃ξ , δ̃η]U [ãm, u] = U [(1 + [δ̃ξ , δ̃η])ãm, (1 + [δ̃ξ, δ̃η ])u]− U [ãm, u] + higher orders,

where U [ãm, u] is the formal power series expansion that implements the Seiberg-Witten

map. Taking into account eq. (3.6), one concludes that

[δ̂ξ, δ̂η ]U [ãm, u]=[δ̃ξ , δ̃η ]U [ãm, u]=U [(1+[δ̃ξ , δ̃η ])ãm, (1+[δ̃ξ , δ̃η])u]−U [ãm, u]+higher orders.

(3.9)

On the other hand, eq. (3.5) leads to

[δ̂ξ , δ̂η]U [ãm, u] = (P+δ
(ncgauge)
Ω(x) )U [ãm, u]=(P+δ

(gauge)
g(x) )U [ãm, u] (3.10)

= U [(1 + P + δ
(gauge)
g(x) ) ãm, (1 + P + δ

(gauge)
g(x) )u]− U [ãm, u] + higher orders,

upon using the fact that by definition of the Seiberg-Witten map we have

δ
(ncgauge)
Ω(x)

U [ãm, u] = δ
(gauge)
g(x)

U [ãm, u]. Finally, eqs. (3.9) and (3.10) imply that

U [(1 + [δ̃ξ, δ̃η ]) ãm, (1 + [δ̃ξ, δ̃η ])u] = U [(1 + P + δ
(gauge)
g(x) ) ãm, (1 + P + δ

(gauge)
g(x) )u],

which in turn yields eq. (3.8). Let us stress that the two key facts we have taken ad-

vantage of to obtain eq. (3.8) are that our noncommutative fields carry a representation

of the supersymmetry algebra and that the Seiberg-Witten map turns (ordinary) gauge

transformations of the ordinary fields into (noncommutative) gauge transformations of the

noncommutative fields. Our proof of eq. (3.8) is valid to all orders in powers of hωmn and

for any type of U(N) Seiberg-Witten map provided δ̃ǫu(x) exists.
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To close the current section let us remark that having a nonlinear realisation of the

N = 1 supersymmetry algebra in four dimensions as furnished by the transformations in

eq. (3.7) is in keeping with the duality that seems to establish the standard Seiberg-Witten

map — supplemented with a field redefinition — between two supersymmetric DBI actions

in four dimensions, namely, the noncommutative U(1) supersymmetric DBI action and the

ordinary U(1) supersymmetric DBI action in the presence of a background field Bmn.

Indeed,we show in appendix B that a given field redefinition of the Seiberg-Witten map in

eq. (3.2) turns, for small Bmn and up to order 4 in the susy field strength, the ordinary

U(1) supersymmetric DBI action for a background field Bmn in four dimensions into the

leading contribution to the noncommutative U(1) supersymmetric DBI action; the latter

being the action of noncommutative U(1) N = 1 superYang-Mills theory. Now, in four

dimensions, the gauge supermultiplet of the ordinary U(1) supersymmetric DBI theory in a

background field Bmn, as formulated in ref. [1], carries a nonlinear realisation of the N = 1

supersymmetry algebra which is an unbroken symmetry of the corresponding DBI action.

This nonlinear realisation of the supersymmetry algebra is [1] a Bmn-dependent linear

combination of the extensions to the case of nonvanishing Bmn of the linear (unbroken)

and the nonlinear (broken) supersymmetry transformations that leave invariant the DBI

action for Bmn = 0 in four dimensions.

4. Only one dual ordinary theory

In section 2, we constructed an ordinary U(1) gauge theory whose fields carry a linear real-

isation of N = 1 supersymmetry in four dimensions and is dual under the Seiberg-Witten

map for superfields to noncommutative U(1) N = 1 superYang-Mills. The Seiberg-Witten

map that connects these ordinary and noncommutative supersymmetric gauge theories

is nonlocal — see eqs. (2.9) — but its nonlocal contributions are mere gauge artifacts.

In section 3, we used the standard — local — Seiberg-Witten map in the Wess-Zumino

gauge to construct an ordinary dual of noncommutative U(1) N = 1 superYang-Mills, the

ordinary fields of this ordinary dual carrying a nonlinear realisation of the N = 1 super-

symmetry algebra in four dimensions. The standard Seiberg-Witten map giving the latter

ordinary dual of noncommutative U(1) N = 1 superYang-Mills is given in eq. (3.2). The

purpose of the current section is to show, at first order in hωmn, that the ordinary du-

als of noncommutative U(1) N = 1 superYang-Mills that we have constructed in sections

2 and 3 are not different ordinary U(1) supersymmetric gauge theories but, indeed, the

same ordinary theory each time formulated in terms of a different set of field variables:

one set of fields represents the N = 1 supersymmetry algebra linearly and the other set

nonlinearly. Before we show this, we must change, as usual, the normalisation of the non-

commutative, (Am,Λα,D), and ordinary, (ãm, λ̃α, d̃), gauge supermultiplets of section 3

so that their gauge transformations have the same normalisation as the gauge transfor-

mations for components derived from the superfield gauge transformations used in section

2. The normalisation change in question is the following: (Am,Λα,D) → (1
2Am,Λα,D)

and (ãm, λ̃α, d̃)→ (1
2 ãm, λ̃α, d̃). This change of normalisation turns the the Seiberg-Witten
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map in eq. (3.2) into the following Seiberg-Witten map:

Am[ãn] = ãm + hA(1) st
m +O(h2), A(1) st

m =
1

2
ωnl

(
ãn∂lãm −

1

2
ãn∂mãl

)
,

Λα[ãm, λ̃α] = λ̃α + hΛ(1) st
α +O(h2), Λ(1) st

α =
1

2
ωmn ãm∂nλ̃α, (4.1)

D[ãm, d̃] = d̃+ hD(1) st +O(h2), D(1) st =
1

2
ωmnãm∂nd̃.

Let us next establish a map between the ordinary gauge supermultiplet (am, λα, d) that

occurs in the map in eq. (2.14) and the ordinary gauge supermultiplet (ãm, λ̃α, d̃) that is

in the Seiberg-Witten map in eq. (4.1). We shall first remind the reader that the map

between the noncommutative supermultiplet (Am,Λα,D) and the ordinary supermultiplet

(am, λα, d) defined by VWZ[am, λα, d] in eq. (2.14) is obtained by gauge transforming to

the Wess-Zumino gauge — see eqs. (2.10) to (2.14) — the Seiberg-Witten map defined

by eqs. (2.3) and (2.9), when x = 0 and X = 0 — recall that X = 0 corresponds to an

ordinary local field redefinition and therefore bears no physical consequences. Now, one

may show that A
(1)

β̇α
,Λ

(1)
α and D(1) in eqs. (2.13) and (2.14) can expressed as follows

A
(1)

β̇γ
= A

(1) st

β̇γ
− 2∂

β̇γ
Z +A

β̇γ
, sA

β̇γ
= 0,

Λ(1)
ρ = Λ(1) st

ρ + Lρ, sLρ = 0, (4.2)

D(1) = D(1) st +D, sD = 0,

where A
(1) st

β̇γ
, Λ

(1) st
ρ and D(1) st are obtained from the functions denoted with the same

symbol in eq. (4.1) by replacing (ãm, λ̃α, d̃) with (am, λa, d). Z and the BRS trivial pieces

A
β̇γ
,L and D are displayed next:

Z =−
1

128
ωαβ

(
aα̇

α −
∂α̇

α

�
∂a

)
aα̇β −

1

128
ωα̇β̇

(
aα

α̇ −
∂α

α̇

�
∂a

)
aβ̇α,

A
β̇γ

=
−1

256
ωαβ

[
4

(
aα̇

α −
∂α̇

α

�
∂a

)
∂

β̇γ

(
aα̇β −

∂α̇β

�
∂a

)
− 8

(
aα̇

α −
∂α̇

α

�
∂a

)
∂α̇β

(
a

β̇γ
−
∂

β̇γ

�
∂a

)

−
∂α̇

α

�
d
∂α̇β∂β̇γ

�
d+ 2i

∂α̇
α∂β̇σ

�
λσ ∂α̇β∂γσ̇

�
λ̄σ̇

]
+ (c.c.)|β↔γ ,

Lρ =
1

128
ωαβ

[
4

(
aα̇

α −
∂α̇

α

�
∂a

)
∂α̇βλρ + 2

∂α̇
α∂

ρ̇
σ

�
λσ∂α̇β

(
aρ̇ρ −

∂ρ̇ρ

�
∂a

)
+ i

∂α̇
α∂

ρ̇
σ

�
λσ ∂α̇β∂ρ̇ρ

�
d

]

(4.3)

+
1

128
ωα̇β̇

[
4

(
aα

α̇ −
∂α

α̇

�
∂a

)
∂

β̇α
λρ + 2

∂α
α̇∂

ρ̇
σ

�
λσ∂

β̇α

(
aρ̇ρ −

∂ρ̇ρ

�
∂a

)
+ i

∂α
α̇∂

ρ̇
σ

�
λσ
∂β̇α∂ρ̇ρ

�
d

]
,

D =
1

128
ωαβ

[
4

(
aα̇

α −
∂α̇

α

�
∂a

)
∂α̇βd+ 2∂α̇

α

(
aσρ̇ −

∂σρ̇

�
∂a

)
∂α̇β∂ρ̇σ

�
d+

∂α̇
α∂

ρ̇
σ

�
λσ∂α̇βλ̄ρ̇+

+ ∂α̇
αλ

σ ∂α̇β∂σ̇σ

�
λ̄σ̇

]
+ (c.c.).
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We finally define the following maps between the ordinary gauge supermultiplets (am, λα, d)

— linear — and (ãm, λ̃α, d̃) — nonlinear:

ãm = am − 2h∂mZ[a] + hAm[a, λ, d] +O(h2),

λ̃α = λ+ hLα[a, λ, d] +O(h2), d̃ = d+ hD[a, λ, d] +O(h2), (4.4)

where Z and the BRS-closed functions Am, Lα and D are given in eq. (4.3) — see also

eq. (4.2).

Let us discuss some properties of the map in eq. (4.4). First, for infinitesimal U(1)

transformations, it maps orbits of (am, λα, d) into orbits of (ãm, λ̃α, d̃), and viceversa. In-

deed, using eq. (4.4), one may show that

s̃z̃(ãm, λ̃α, d̃) = sz(ãm, λ̃α, d̃), z̃ = z + hszZ[an],

where sz denotes the U(1) BRS operator acting on (am, λα, d): szam = −2∂mz, szλα = 0

and szd = 0, and s̃z̃ stands for the U(1) BRS operator acting on (ãm, λ̃α, d̃): s̃z̃ãm = −2∂mz̃,

sz̃λ̃α = 0 and sz̃d̃ = 0. Secondly, the fact that underN = 1 supersymmetry transformations

the supermultiplet (am, λα, d) transforms as follows

δǫam =
1

2
ǫσmλ̄−

1

2
ǭσ̄mλ, δǫλα = −ǫαd+ iǫγ(σmn)γαfmn,

δǫd = iǭσ̄m∂mλ+ iǫσm∂mλ̄, fmn = ∂man − ∂nam, (4.5)

and eq. (4.4), lead to

δǫ(ãm, λ̃α, d̃) = (δ̃ǫ + s̃z̃)(ãm, λ̃α, d̃), z̃ = Re(ihǭΨ̄(1)) + hsRe(ihǭΨ̄(1))Z[a],

where δ̃ǫ(ã, λ̃, d̃) are the nonlinear supersymmetry transformations in eq. (3.7) for U(1)

fields after the rescaling ãm →
1
2 ãm, and Ψ(1) and Z[a] are given in eqs. (2.13) and (4.3),

respectively. Hence, modulo gauge transformations, the linear supersymmetry transforma-

tions — eq. (4.5) — of the gauge supermultiplet (am, λα, d) imply the nonlinear super-

symmetry transformations of the gauge supermultiplet δ̃ǫ(ã, λ̃, d̃) as defined in eq. (3.7);

and viceversa. Finally, if (ãm, λ̃α, d̃) and (am, λα, d) satisfy eq. (4.4), then both gauge

supermultiplets will have the same noncommutative supermultiplet image, (Am,Λα,D),

under the corresponding maps in eqs. (2.14) and (4.1):

Am = am + hA(1)
m [anλα, d] +O(h2) = ãm + hA(1) st

m [ãn] +O(h2),

Λα = λα + hΛ(1)
α [anλβ, d] +O(h2) = λ̃α + hΛ(1) st

α [ãn, λ̃β ] +O(h2), (4.6)

D = d+ hD(1)[anλα, d] +O(h2) = d̃+ hD(1) st[ãn, d̃] +O(h2).

Eq. (4.2) helps to show the previous set of equalities. We have thus shown that the

supermultiplets (ãm, λ̃α, d̃) and (am, λα, d) define, up to first order in hωmn the same U(1)

ordinary supersymmetric gauge theory with no matter fields. Notice that eqs. (4.6) imply

that the action in terms of (ãm, λ̃α, d̃) is equal to the action in terms of (am, λα, d), if these

gauge supermultiplets are related by eq. (4.4).
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We have thus shown that the ordinary theories dual to noncommutative SYM found

in sections 2 and 3 are not different theories but the same ordinary supersymmetric gauge

theory formulated in each case in terms of a different set of field variables. The ordinary

field variables introduced in section 2 carry a linearly realised N = 1 supersymmetry and

the set of ordinary fields of section 3 transforms nonlinearly under N = 1 supersymmetry.

5. Summary and conclusions

In section 2, we have found, at first order in hωmn, the most general solution to the Seiberg-

Witten map equations for a noncommutative U(1) vector superfield that is a polynomial

in its ordinary counterpart,v, the chiral and antichiral projections of the latter, v+ and v−,

and the susy covariant derivatives of them all; such polynomial being at most quadratic

in v, v+ and v−. These Seiberg-Witten maps are nonlocal, but their nonlocal parts are

gauge artifacts since they can be set to zero by choosing the supersymmetric Landau gauge.

Furnished with this family of solutions to the U(1) Seiberg-Witten map equations, we have

obtained an ordinary dual under the Seiberg-Witten map of noncommutative SYM. This

ordinary dual when formulated in terms of the ordinary fields considered in section 2 has

linearly realised supersymmetry. In section 2, we have also shown by explicit computation

that the standard Seiberg-Witten map of ref. [1] is never the θθ̄ component of a vector

superfield which is a polynomial in the corresponding ordinary vector superfield and its

susy covariant derivatives. In section 3, we have obtained the ordinary duals under the

generalisation of the standard Seiberg-Witten map of ref. [1] of noncommutative U(N)

gauge theory with N = 1 supersymmetry. These duals have been obtained by formulating

the noncommutative theory in the Wess-Zumino gauge. The noncommutative fields of our

noncommutative theory carry a linear realisation of the N = 1 supersymmetry algebra

in four dimensions; however, as we have shown in section 3, their ordinary counterparts

under the standard Seiberg-Witten map carry a nonlinear representation of the N = 1

supersymmetry algebra in four dimensions. Hence, the ordinary dual of our noncommuta-

tive supersymmetric theory supports a nonlinear realisation of the supersymmetry algebra

when formulated in terms of the ordinary supermultiplets of section 3. We have seen

that this is in line with the duality under the Seiberg-Witten map — see appendix B —

between the noncommutative U(1) supersymmetric DBI theory and the ordinary abelian

supersymmetric DBI theory in a Bmn field in four dimensions. In section 4, we have shown

that the ordinary duals of noncommutative SYM constructed in sections 2 and 3 by using

completely different types of Seiberg-Witten map are not different ordinary supersymmet-

ric gauge theories, but the same ordinary theory formulated, in each case, in terms of

a different set of field variables: a set of field variables carries a linear representation of

N = 1 supersymmetry algebra in four dimensions and the other set carries a nonlinear

representation of this algebra. We define, in section 4, the map that realises the change

of field variables and study the properties of the map: it maps infinitesimal gauge orbits

into infinitesimal gauge orbits and turns the linear realisation of N = 1 supersymmetry in

section 2 into the hωmn-dependent nonlinear realisation of the latter in section 3.

– 16 –



J
H
E
P
1
1
(
2
0
0
8
)
0
8
7

We believe that the results we have obtained in sections 2 and 4 for U(1) can be ex-

tended to U(N) groups in the fundamental, antifundamental, adjoint and bifundamental

representations. However, to obtain explicit expressions such as the Seiberg-Witten map

for superfields in eqs. (2.9) will be much harder since the r.h.s. in eq. (2.4) contains an

infinite number of terms for nonabelian ordinary groups. We also believe that the results

obtained in section 2 can be extended to any ordinary nonabelian gauge group in any

representation, if one adopts the general philosophy behind the formalism put forward in

refs. [24 – 26] for non-supersymmetric gauge theories: now the noncommutative vector su-

perfields will be valued in the enveloping algebra of the Lie algebra of the ordinary gauge

group. Section 3, however, will not hold, in general, for a given ordinary gauge group in

a given representation, e.g., SU(N) in the fundamental representation. Indeed, generally

speaking δ̃ǫãm as defined in eq. (3.7) is not valued in the Lie algebra of the gauge group,

so it is not, in general, a variation of an ordinary gauge field. It so happens that for

arbitrary gauge groups in arbitrary representations, if the enveloping-algebra-valued non-

commutative fields of the gauge triplet (Am,Λα,D) are defined in terms of ordinary fields

by means of the standard Seiberg-Witten map, the linear supersymmetry transformations

in eq. (3.1) are not given rise to by variations of the ordinary fields. In view of the im-

portant results — see refs. [27, 28] — achieved within the enveloping-algebra formalism of

refs. [24, 25] and [26], it is worth exploring how to construct supersymmetric versions of

the models in refs. [27] and [28]. Perhaps, one should look for hωmn-dependent nonlinear

realisations of supersymmetry carried by ordinary fields that yield upon using the standard

Seiberg-Witten map noncommutative fields that also carry an hωmn-dependent nonlinear

realisation of supersymmetry. Let us notice that we cannot start with an ordinary gauge

supermultiplet having standard linear supersymmetry transformations and then apply the

standard Seiberg-Witten map to define the noncommutative fields, since, as we show in

appendix C, the ordinary action dual to the action of noncommutative U(1) gauge the-

ory cannot be made supersymmetric under those linear supersymmetry transformations

by adding local terms which are polynomials in hωmn. Finally, perhaps, to generalise the

formalism of refs. [24, 25] and [26] so as to include supersymmetry, one should use the ideas

and techniques in ref. [47].
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A. Superspace conventions

Our superspace conventions are those of ref. [36]. The superspace coordinates are given

by xm, θα, θ̄α̇, with θ̄α̇ = θ⋆
α. We denote space-time indices with latin letters and spinor
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indices with greek letters. Spinor indices are raised with and lowered with ǫαβ , ǫαβ , ǫ
α̇β̇, ǫα̇β̇

such that ǫ12 = 1 = ǫ12 = −ǫ1̇2̇ = −ǫ1̇2̇ and ǫ∗αβ = ǫ
β̇α̇

. Contractions will be denoted as

ǫη ≡ ǫαηα, ǭη̄ ≡ ǭ
α̇η̄α̇. For the sigma matrices we have

(σm)αα̇ = (1, ~σ), (σ̄m)α̇α = (−1, ~σ),

(σmn)αβ =
1

2
(σmσ̄n − σnσ̄m)αβ, (σ̄mn)α̇

β̇ =
1

2
(σ̄mσn − σ̄nσ̄m)α̇

β̇.

Superfields are functions over the superspace. We denote noncommutative superfields with

capital letters and ordinary superfields with lower-case letters. An ordinary superfield χ

transforms under supersymmetry as

δǫχ(x, θα, θ̄α̇) = (−ǫQ− ǭQ̄)χ(x, θα, θ̄α̇),

and identically for a noncommutative superfield Ξ. The generators Qα, Q̄α̇ satisfy the

supersymmetry algebra {Qα, Q̄α̇} = 2iσ̄m
α̇α∂m; explicitly

Qα =∂α + iθ̄α̇(σ̄m)α̇α∂m, Q̄α̇ =∂̄α̇ + i(σ̄m)α̇αθ
α∂m.

The supersymmetric covariant derivatives Dα, D̄α̇, which satisfy {Dα, Qβ} = 0 =

{Dα, Q̄β̇
} = {D̄α̇, Qβ} = {D̄α̇, Q̄β̇

} and {Dα, D̄α̇} = −2iσ̄m
α̇α∂m, are

Dα =∂α − iθ̄
α̇(σ̄m)α̇α∂m, D̄α̇ =∂̄α̇ − i(σ̄

m)α̇αθ
α∂m.

We consider the following component expansion of a real superfield v:

v(x, θ, θ̄) =c(x) + θαψα(x) + θ̄α̇ψ̄α̇(x) +
1

2
θ2f(x) +

1

2
θ̄2f̄(x) + θασ̄m

β̇α
θ̄β̇am +

1

2
θ2θ̄α̇λ̄′α̇

+
1

2
θ̄2θαλ′α +

1

4
θ̄2θ2d′,

λ′α ≡λα − iσ̄
m
β̇α
∂mψ̄

β̇ , d′ ≡ d+ �c,

and similarly for a noncommutative real superfield V .

B. Duality between noncommutative and ordinary supersymmetric U(1)

DBI theories

The aim of this appendix is to show the equivalence of the effective supersymmetric DBI

actions for open strings ending on D-branes obtained, on the one hand, in noncommutative

space-time, and on the other, in ordinary space-time but in the presence of a constant

background Bmn. The first type of DBI actions have a linearly realised supersymmetry in

terms of the noncommutative fields, while the ordinary DBI actions with a Bmn background

are invariant under non-linear supersymmetry transformations. The equivalence is provided

by the Seiberg-Witten maps; this provides a natural understanding of the fact that ordinary

fields in local SW maps always seem to transform non-linearly under supersymmetry.

In the non-supersymmetric U(1) case, the equivalence was first noted by Seiberg and

Witten [1], and it was shown to be exact. In the supersymmetric case, both the ordinary
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and noncommutative actions are known — see refs. [48, 49] — but their possible equivalence

has not been studied. Here we will show the equivalence in the limit of hω → 0 and for small

values of the fields. We choose the hωmn → 0 and not the Seiberg-Witten limit α′ → 0

because in the supersymmetric case the α′ → 0 limit requires a complicated reexpansion

of the action, while the hωmn → 0 limit is compatible with a perturbative definition of

the DBI actions in terms of an expansion in the number of fields. Our aim is to show the

equivalence of the DBI actions at first order in h and up to products of three ordinary fields.

The noncommutative DBI lagrangian, which we shall denote as L̂DBI, is a functional of the

noncommutative supersymmetric field strengths Ŵα = −1
4D̄

2(e−V
⋆ ⋆ Dαe

V
⋆ ). It is given by

a sum of terms with even powers of Ŵ 2, ˆ̄W 2 [49], so that it involves sums of products of

an even number of component fields. We want to expand this action in terms of ordinary

fields at first order in h using the standard SW maps of eq. (4.1).

It can be easily seen that in order to compute the contributions with products of three

ordinary fields and less, we only need L̂DBI up to O(Ŵ 2). Thus, following [49] — see [1]

for the normalisation — for a D3 brane we get,

L̂DBI =
1

2πGs

(
1

16

∫
d2θŴ 2 +

1

16

∫
d2θ̄ ˆ̄W 2

)
+O(Ŵ 4), (B.1)

where Gs is the noncommutative string coupling constant. In the component field expan-

sion of Ŵ one must use the noncommutative space-time metric G.

On the other hand, concerning the ordinary DBI action in the presence of the back-

ground field Bmn — which we shall denote as LDBI — it is constructed from the action

with Bmn = 0 by making the substitution fmn → fmn − 2Bmn — the differences with the

conventions in [1] are due to our choice of the component field expansion of the superfield v.

The action at Bmn = 0 is given by an expansion involving even powers of W 2, where Wα =

−1
4D

2Dαv is the ordinary supersymmetric field-strength, so that to get the terms with three

fields after the substitution fmn → fmn − 2Bmn we need the terms of LB=0
DBI up to O(W 4).

These are given, adapting the result in [48] to our conventions, by the following expression

LDBI =
1

2πgs

(
1

16

∫
d2θW 2+

1

16

∫
d2θ̄W̄ 2+

(2πα′)2

128

∫
d2θd2θ̄W 2W̄ 2+O(W 6)

)∣∣∣∣
f→f−2B

. (B.2)

gs is the ordinary string coupling constant, and the ordinary metric g must be used in the

component field expansion of W .

In order to relate both of the actions (B.1) and (B.2) in the limit of small hω, we need

the results from [1] that follow

1

Gs
=

1

gs
+O(h2), Gmn = gmn +O(h2), B =

−1

(2πα′)2
g−1hωg−1 +O(h2). (B.3)

For simplicity we can take both G and g as the Minkowski metric. We must expand both

of the actions (B.1) and (B.2) in terms of the ordinary component fields and compare the

results. Using the SW maps in (4.1), the noncommutative action L̂DBI is given by

L̂DBI =
1

2πgs

[
−

1

16
fmnf

mn +
i

16
λ̄σ̄m∂mλ+

1

32
d2 −

h

64
ωklfklfijf

ij +
h

16
ωklfikfjlf

ij
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+
ih

128
ωklfkl(λ̄σ̄

m∂mλ−∂mλ̄σ̄
mλ)+

ih

64
ωklfmk(λ̄σ̄

m∂lλ−∂lλ̄σ̄
mλ)+

h

128
ωklfkld

2

]

(B.4)

+O(4 fields) +O(h2) + total derivative.

The ordinary LDBI action in eq. (B.2) has the following component expansion, after using

the relation between ω and B in eq. (B.3):

LDBI =
1

2πgs

[
−

1

16
fmnf

mn +
i

16
λ̄σ̄m∂mλ+

1

32
d2 −

h

64
ωklfklfijf

ij +
h

16
ωklfikfjlf

ij

−
ih

256
ωklfkl(λ̄σ̄

m∂mλ− ∂mλ̄σ̄
mλ) +

h

256
ω̃klfkl∂m(λ̄σ̄mλ)

+
ih

128
ωklfmk(λ̄σ̄l∂

mλ− ∂mλ̄σ̄lλ) +
ih

128
ωklfmk(λ̄σ̄

m∂lλ− ∂lλ̄σ̄
mλ)

−
h

128
ǫlmqtωklfm

k∂q(λ̄σ̄tλ)−
h

256
ωkld∂l(λ̄σ̄kλ)+

ih

256
ω̃kld(∂kλ̄σ̄lλ−λ̄σ̄l∂kλ)

−
h

128
ωklfkld

2

]
+O(4 fields) +O(h2) + total derivative,

where we have defined ω̃kl ≡ 1
2ǫ

klmnωmn. At first sight, it is clear that the terms involv-

ing fmn alone coincide, as is known from previous results concerning non-supersymmetric

theories. Still, the rest of the terms do not seem to match. However, we must still note

that the SW maps are not uniquely defined, since they have an ambiguity given, in the

U(1) case, by field redefinitions. Hence, we should check whether redefining the fields in

the lagrangian LDBI we can exactly match L̂DBI of eq. (B.4). The answer turns out to be

positive in a non-trivial way. Indeed, it can be seen after some work that the following

field redefinitions

δam =
h

16
ω̃ n

m λ̄σ̄nλ,

δλα = −
3ih

16
ω̃klfklλα +

3h

16
ωklfklλα +

h

8
ωklfm

k(σlm)αβλβ +
ih

4
ω̃klfm

k(σlm)αβλβ,

δd =
h

4
ωklfkld−

h

16
ωkl∂k(λ̄σ̄lλ)−

ih

16
ω̃kl(∂kλ̄σ̄lλ− λ̄σ̄l∂kλ).

turn LDBI into L̂DBI, modulo total derivatives and working at order h and with terms

involving products of up to three component fields. This is not trivial since even when con-

sidering the previous field redefinitions with arbitrary coefficients for the different terms,

one cannot generate in the action LDBI the terms appearing in L̂DBI with arbitrary coeffi-

cients. This shows that both DBI actions are in fact equivalent at least in the limit of small

hωmn and small values of the fields, and this equivalence is provided by the Seiberg-Witten

map in eq. (4.1) supplemented with the previous field redefinitions. I.e., the modified

Seiberg-Witten maps that follow,

Am =am +
h

2
ωkl

(
ak∂lam −

1

2
ak∂mal

)
−

h

16
ω̃ n

m λ̄σ̄nλ+O(h2),

Λ=λ+
h

2
ωklak∂lλ+

3ih

16
ω̃klfklλα−

3h

16
ωklfklλα−

h

8
ωklfm

k(σlm)αβλβ−
ih

4
ω̃klfm

k(σlm)αβλβ
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+O(h2),

D =d+
h

2
ωklak∂ld−

h

4
ωklfkld+

h

16
ωkl∂k(λ̄σ̄lλ) +

ih

16
ω̃kl(∂kλ̄σ̄lλ− λ̄σ̄l∂kλ) +O(h2).

map L̂DBI of eq. (B.1) into the action LDBI of eq. (B.2).

It is worth noting that, in the pure bosonic case, there is no need to consider field

redefinitions; in fact the equivalence of the pure bosonic parts of L̂DBI and LDBI was shown

to be exact without having to use field redefinitions. This is due to the fact that, at least at

order h and possibly beyond, the pure bosonic field redefinitions only modify the bosonic

lagrangian with pure derivative terms, so that their effect can be neglected.

C. Is there a local linear supersymmetric completion of the bosonic Yang-

Mills action expanded with the standard SW map?

In section 1 it was shown that the standard SW map can never be embedded into a

superfield. Furthermore, we have seen that when considering local SW maps in components,

the ordinary fields transform in a non-linear representation of the supersymmetry algebra.

In all these cases, it was assumed that supersymmetry was linearly realised on the side of

the noncommutative fields. However, there is still the possibility of the ordinary fields being

in a linear representation of supersymmetry and the noncommutative ones in a non-linear

one. We can thus start assuming a linear representation of supersymmetry on the WZ

gauge component fields am, λ, d, i.e., they should transform as in eq. (4.5). With this point

of view, the transformation properties of the noncommutative fields are unknown and so is

the action in terms of noncommutative fields. Nevertheless, we know its pure bosonic part,

which is the noncommutative Yang-Mills expanded with the SW map. Assuming further

that the standard SW map (2.5) is valid for the Am component, we have that the bosonic

part of the action is given by

Sbosonic =−
1

16

∫
d4xFmn ⋆ F

mn = (C.1)

−
1

16

∫
d4xfmnf

mn −
h

64

∫
d4xωabfabfmnf

mn +
h

16

∫
d4xωabfmafnbf

mn +O(h2),

where the awkward normalisation factors are due to our unconventional definitions of the

component fields Am, am. What needs to be checked is whether there is any local, Poincaré

and gauge invariant completion of the action (C.1) involving the WZ component fields

am, λ, d which is invariant under the supersymmetric transformations of eq. (4.5). Since

the order O(h0) part is known to have a supersymmetric completion, it suffices to check

the O(h) part. To do so we consider all the possible independent — modulo integration by

parts — gauge invariant monomials which are of order one in ωmn, constructed from the

fields am, λ, d and spacetime derivatives, which include at least one superpartner field λ, d.

They are shown next:

t1 = ωmnfmrfn
rD, t2 = ωmnfmnd

2, t3 = ωmn∂rfmnλσ
rλ̄,

t4 = ωmn∂rfmrλσnλ̄, t5 = ωmn∂ndλσmλ̄, t6 = ωmnfmn�d,
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t7 = Imωmnfmnλ/∂λ̄, t8 = Imωmnfmrλσn∂
rλ̄, t9 = Imωmnfmrλσ

r∂nλ̄,

t10 = Imωmndλσm∂nλ̄, t11 = Imωmn
�∂mλσnλ̄.

“Im” denotes imaginary part. By solving

δ̂ǫ

[

Sbosonic + h

∫
d4x

∑

i

αiti

]

= 0

expanding the l.h.s. in integrals of independent monomials, one readily finds that there is

no solution to the previous equation. This can be seen for example by considering just the

terms of the type ffλ, ffλ̄, which are the only ones generated from the supersymmetric

variation of the fff terms of the bosonic action, as is clear from eq. (4.5).

Thus, the noncommutative Yang-Mills action expanded with the standard SW map

has no completion invariant under the linear supersymmetry from eq. (4.5).
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